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                                                             ABSTRACT 

The paper summarizes an end-to-end activity connecting the global climate modeling enterprise 

with users of climate information in Alaska.  The effort included retrieval of the requisite 

observational datasets and model output, a model evaluation and selection procedure, the actual 

downscaling by the delta method with its inherent bias-adjustment, and the provision of products 

to a range of users through visualization software that empowers users to explore the downscaled 

output and its sensitivities. An additional software tool enables users to examine skill metrics and 

relative rankings of 21 global models for Alaska and six other domains in the Northern 

Hemisphere. The downscaled temperatures and precipitation are made available as calendar-

month decadal means under three different greenhouse forcing scenarios through 2100 for more 

than 4000 communities in Alaska and western Canada.  The visualization package displays the 

uncertainties inherent in the multi-model ensemble projections. These uncertainties are often 

larger than the projected changes.  
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1.   Introduction  

The rapid rate of climate warming in Alaska (Thoman and Brettschneider, 2016; Overland et al., 

2017) and its consequences (USGCRP, 2014) have created a need for products to help plan for 

the future. Global climate models run with different greenhouse gas scenarios provide climate 

scientists with projections of the expected large-scale response to anthropogenic climate change. 

However, regional changes are not well resolved in these low-resolution models, precluding the 

detailed landscape level projections often required for understanding impacts on local 

communities and resources. To date, the downscaled products available for planning and 

adaptation in Alaska are severely limited. The goal of this paper is to document the development 

and characteristics of downscaled (finer resolution) products and associated visualization tools 

recently made available in Alaska. 

 

Development of downscaled climate for Alaska has historically been limited both by a 

challenging physical geography and by data limitations. Alaska is a particularly difficult region 

to model, with tall mountains, long complex coastline (Figure 1), a landscape surrounded by 

seasonally varying sea ice, and large seasonal swings in temperature, all of which contribute to 

strong gradients in temperature and precipitation (Figure 2).  Coarse-resolution global climate 

models (GCMs) do not adequately represent these influences on temperature and precipitation at 

the landscape level, so downscaling of the GCM information is necessary to provide stakeholders 

and decision makers with tools to address practical problems such as how climate change will 

affect local water resources, land use and infrastructure. Downscaling also enables correction of 

model biases if the downscaling is keyed to historical observational data, although the lack of 

long-term observations for a variable and location for which downscaling is desired can limit 

options for downscaling.  This limitation is especially problematic for quantities that are not 

routinely measured, e.g., solar radiation, soil moisture, snow water equivalent. 

 

Over the last decade, summaries of global climate model output available for the region have 

enabled coarse-resolution estimates of regional change. Both temperature and precipitation are 

expected to increase over Alaska, and as with most high-latitude regions, model agreement on 

the sign of the precipitation change is favorable.  Regional projected changes in temperature and 

precipitation were calculated for a region (60°-72°N, 103°-170°W) including Alaska based on 

output from the CMIP3 (Climate Model Intercomparison Project, version 3) generation of 
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models (Christensen et al. 2007). By 2080-2099 (relative to 1980-1999 and for the A1B 

emissions scenario, across 21 GCMs), they indicated a median annual temperature increase of 

+4.5°C (range +2.7ºC to +6.4ºC), with greater increases in  

 

Figure 1   Topography and coastal configuration of Alaska. Source: Scenarios Network for 

Alaska and Arctic Planning (SNAP), 

http://data.snap.uaf.edu/data/IEM/Inputs/ancillary/elevation/iem_prism_dem_1km.tif, 

modified by J. Littell.   



5 

 

 

 

Figure 2.  1950-1999 mean annual mean temperature (upper) and total precipitation (lower) for 

Alaska based on downscaled CRU TS 3.1 (Scenarios for Alaska and Arctic Planning, 

University of Alaska, Fairbanks, after Harris et al. 2014).  Alaska station data  

availability in CRU was most consistent for the 1950-1999 timeframe. 
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winter (median +6.0ºC) and autumn (median +4.8ºC) than spring (median +3.7ºC) and summer 

(median +3.0°C).  The models projected an increase in precipitation in all seasons, with a median 

annual increase across models of 21% (range +6% to +32%), with more (+28%) in winter and 

less (+14%) in summer. A global summary of the CMIP5 (Coupled Model Intercomparison 

Project, version 5) output provided by Collins et al. (2013) for the IPCC (Intergovernmental 

Panel on Climate Change) Fifth Assessment included sub-regional details.  The CMIP5 

ensemble average temperature increases for the RCP (Representative Concentration Pathway) 

8.5 scenario are generally higher for Alaska compared to global values: they range from +4-5ºC 

in southeast /Aleutian Alaska to +8°C or more for the North Slope of Alaska. Annual 

precipitation increases projected for CMIP5 are generally similar throughout Alaska (~+15% for 

Southeast Alaska and the Aleutians, +20% for the Interior and Yukon-Kuskokwim delta, +30% 

for the North Slope). While these projections provide useful, coarse-scale information, the model 

output lacks the details of the topographic and coastal influences that can be important for users. 

One of the two primary methods of transforming coarse-resolution climate information to high 

resolution is statistical downscaling. The goal of statistical downscaling is to reproduce local 

climate averages over timescales of a decade to several decades. This requires long-term high 

quality observational data to develop ‘training’ relationships between coarser-resolution model-

derived variables and local conditions. A statistical relationship is established between large-

scale climate and observed local variables (temperature, precipitation, winds) over a ‘training’ 

period. This method allows downscaling to a local point at whatever time step is most finely 

resolved by the local observations, typically monthly or daily. The most common statistically 

downscaled variables are temperature and precipitation, although winds, relative humidity, ocean 

water temperature, and snow water equivalent have also been downscaled statistically. The 

procedure implicitly includes a bias-correction of the model output. The so-called “delta” 

method, used here and described in Section 3.2, obtains a bias correction from model output and 

corresponding local observations for an historical period; the same correction is then applied to 

the model’s future output for the particular location. Other statistical downscaling methods exist, 

including several variants of quantile-mapping (e.g., Maurer et al., 2007). Hayhoe (2010) found 

that the statistical downscaling is most sensitive to the driving GCM, secondly to the statistical 

method, followed by the evaluation metric. Statistical downscaling is relatively computationally 

inexpensive, allowing many models/scenarios to be downscaled, and the methods are generally 
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straightforward. The key weakness is that one has to assume the statistical relationship developed 

on the historical data will not change in the future. This method also requires a robust historical 

climatology based on observations, which are not always readily available.  

Dynamical downscaling has the same ultimate goal as statistical downscaling – a finer resolution 

climate scenario -- but employs a regional climate model forced at the boundaries by the large-

scale climate model rather than relying on statistical relationships. Dynamical downscaling for 

Alaska has been conducted using lateral boundary forcing from reanalysis output (e.g., Bieniek 

et al. 2016, Bhatt et al. 2007) as well as historical and future output from climate models (Zhang 

et al. 2007a, 2007b, Lader et al. 2017). Dynamical downscaling provides physically consistent 

projections of many variables, and therefore sufficient data to explore future climate variability 

mechanisms. This method is computationally expensive, limiting the number of different 

models/scenarios that can be downscaled. Dynamical downscaling is also a complex process 

requiring a relatively high level of modeling expertise to conduct. Biases and other errors in the 

models are also problematic in dynamical downscaling. 

The present paper describes statistical downscaling for Alaska, with an extension of the products 

into western Canada. It complements and extends previous uses of statistical and dynamical 

downscaling of global model output for the contiguous United States. For example, the Bureau 

of Reclamation (2013) supported a downscaling of monthly temperature and precipitation 

covering the contiguous 48 states at 1/8° resolution for an historical period (1970-1999) and 

three 30-year future time slices spanning 2010-2099.  To derive higher resolution data for 

regional climate change assessments, NASA (National Aeronautical and Space Administration) 

coordinated a statistical downscaling of maximum and minimum air temperature and 

precipitation from 33 of the CMIP5 climate models to a very fine 800-m grid over the contiguous 

United States.  The product, known as the NEX-DCP30 dataset (https://cds.nccs.nasa.gov/nex/), 

covers the historical period (1950-2005) and 21st century (2006-2099) under four Representative 

Concentration Pathways (RCP) emission scenarios developed for the IPCC’s Fifth Assessment 

Report (AR5). A supporting visualization tool, the National Climate Change Viewer (NCCV), 

was developed by the USGS (https://www2.usgs.gov/climate_landuse/clu_rd/nccv.asp). The 

North American Regional Climate Change Assessment Program (NARCCAP) is a dynamical 

downscaling activity in which regional climate modeling groups performed a coordinated set of 
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high-resolution simulations of North American climate (Mearns et al., 2009).  However, the 

NARCCAP domain boundary passes through the middle of Alaska, placing the state in the buffer 

zone where the coarse-resolution global model heavily influences the regional model’s solution. 

The Coordinated Regional-climate Downscaling Experiment (CORDEX) has also performed 

dynamical simulations for an Arctic domain that includes Alaska (Koenigk et al., 2015), 

although the broader Arctic domain necessitates a resolution of 20-50 km. 

The statistical downscaling described here represents a twofold extension of the activities 

summarized above.  First, it extends the downscaling to Alaska, which was not part of the 

domain of the products produced for the rest of the U.S.  Second, the downscaling targets 

communities in Alaska (as well as western Canada) by including a visualization tool for the 

display of the historical climate and projected changes for more than 4000 specific communities.  

These communities range from small villages with fewer than 100 people to major population 

centers such as Fairbanks and Anchorage, where the population exceeds 300,000.  The intent of 

the project was to develop an end-to-end system of climate downscaling, connecting the global 

modeling enterprise with decision-makers and other users in specific locations.   

The downscaling was performed by the Scenarios Network for Alaska and Arctic Planning 

(SNAP) at the University of Alaska, Fairbanks.  It utilized the output of the global models that 

participated in the Coupled Model Intercomparison Project, version 5 (CMIP5).  The 

downscaling project had three main components: (1) selection of a subset of the CMIP5 models 

to be downscaled for Alaska, (2) statistical downscaling of the coarse-resolution global model 

output to a fine-scale grid with 2 km resolution, and (3) the development of the visualization tool 

that displays output for the 2 km x 2 km pixel corresponding to the particular community 

selected by a user.  In the following sections, we describe these three components. 

2. Data and models 

Several historical databases were used in the model evaluation and in the downscaling. The 

European Center for Medium-Range Weather Forecasting’s ERA-40 reanalysis provided the 

observationally-based fields for the model evaluation.  The ERA-40 reanalysis spans 45 years 

(1958-2002) and was available on a horizontal grid with 2.5° resolution in latitude and longitude. 
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The ERA fields used in the model evaluation were surface air temperature, precipitation and sea 

level pressure.   

For the downscaling of the global climate models, two station-based datasets of temperature and 

precipitation provided the historical climatologies, giving users of the downscaled products the 

option to choose the database on which the downscaling was based (Section 4).  The first 

database is the PRISM climatology for Alaska (Daly et al., 2008 and subsequent updates).  

PRISM consists of calendar-month climatologies (1961-1990) of temperature and precipitation 

with a spatial resolution of 2 km over Alaska and western Canada.  PRISM grids represent 

spatial interpolations of station data, taking into account elevation changes and lapse rates. Finer 

spatial scale PRISM products exist for Alaska (771 m, 1971-2000), but for consistency of the 

results for western Canada and Alaska, we used the 2 km PRISM grids in this project. The 

second database is the University of East Anglia Climate Research Unit’s CRU TS 3.2, in which 

monthly station observations of temperature and precipitation have been binned into grid cells at 

a resolution of 0.5° latitude x 0.5° longitude (https://crudata.uea.ac.uk/cru/data/hrg/). The 

historical climatological of the two databases differ slightly because their construction (and our 

interpolation of CRU TS) differed in the two cases.  For example, temperature differences of a 

degree (°C) or so were not uncommon. For this reason, users of our downscaling tool (Section 4) 

can choose either option for the baseline climatology and can compare the two sets of results if 

they so desire. 

The global climate model output is from the CMIP5 archive, which is the archive utilized in the 

Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC, 

2013).  As with the observational data, the model output used here consisted of monthly surface 

air temperature, precipitation, and sea level pressure fields.  The fields were from (1) the models’ 

historical simulations (late 20th century, corresponding to the observational fields) and (2) the 

models’ future simulations forced by the RCP 4.5 (low-emission), RCP 6.0 (mid-range) and RCP 

8.5 (high-emission) scenarios.  

Because the models in the CMIP5 archive were run at different resolutions, all fields were 

interpolated to a common 2.5° x 2.5° grid of the ERA-40 reanalysis.  The 2.5° resolution was 

used for the global model evaluation and selection. The downscaled products described in 
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Section 4 were based on an interpolation of the global model output from the 2.5° x 2.5° grids to 

the finer 2 km resolution of the PRISM climatology. 

3. Methods 

3.1  Model selection 

While the CMIP5 archive includes output from more than three dozen models, several 

considerations led to the choice of a subset of the models for the present downscaling activity.  

First, the use of the full set of 30-40 models is computationally unwieldy and tends to preclude 

examinations of differences among models.  Second, not all models have archived the 

simulations (three RCP scenarios in addition to historical runs) and variables at the temporal 

resolution required for some downscaling applications. Of the approximately three dozen models 

in the CMIP5 archive, only 21 contained the needed output at the time our model evaluation was 

performed.  These 21 models are listed in Table 1. Third, there are -- at best -- diminishing 

returns from the inclusion of models beyond a total of 10-20.  Finally, there are indications 

(although not conclusive evidence) that retaining a subset of the models deemed to be “best” for 

a particular application can enhance the utility of the results. The latter consideration has some 

precedents in the literature, including some for Arctic research, but calls for caveats that we 

discuss below. 

             Table 1.  The 21 models with archived output suitable for downscaling 

 

Model                             Country     Model                             Coun

 

CanESM2                       Canada 

CNRM-CM5                  France 

CSIRO-Mk3-6-0            Australia 

GFDL-CM3                    United States 

GFDL-ESM2G               United States 

GFDL-ESM2M              United States 

GISS-E2-H                     United States 

GISS-E2-R                     United States 

HadCM3                         U.K. 

HadGEM2-CC                U.K. 

Had GEM2-ES               U.K. 

IPSL-CM5A-LR            France 
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IPSL-CM5A-MR           France 

MIROC4h                      Japan 

MIROC5                        Japan 

MIROC-ESM                 Japan 

MIROC-ESM-CHEM    Japan 

MPI-ESM-LR                Germany 

MRI-CGCM3                 Japan 

NCAR-CCSM4              United States 

NorESM1-M                  Norway 

In previous applications to the Arctic, Wang and Overland (2009) chose a subset of CMIP3 models 

on the basis of their ability to capture the seasonal cycle and mean September extent of Arctic sea 

ice in order to optimize projections of future sea ice changes.  Rogers et al. (2015) used a two-step 

model selection algorithm to show that the timing of an ice-free Arctic in September advances 

from 2055 to 2034 when the number of CMIP5 models is filtered from a full set to the subset of 

five models that best capture recent sea ice trends and other hindcast metrics.  In an attribution 

study of recent Arctic temperature variations, Fyfe et al. (2013) chose a subset of five CMIP5 

models on the basis of their simulations of Arctic temperature trends over three historical 

timeslices. The number of models retained in these studies is consistent with Walsh et al.’s (2008) 

finding, based on multimodel composites of historical Arctic simulations, that the mean absolute 

errors decrease as the number of best-performing models in a composite increases to 5-8, but 

increases as additional (poorer-performing) models are included in the composites. Nevertheless, 

model selection is fraught with risks because the best-performing models vary with the choice of 

the criterion for validation. Moreover, different models perform best for different variables, 

regions, and other choices in validation methodology.  A case may be made that there is still merit 

in Knutti et al.’s (2010) assessment that “…there is little agreement on metrics to separate “good” 

from “bad” models”.  Given this lack of agreement, our decision to utilize only a subset of the 

CMIP5 models was based on the more practical considerations listed in the preceding paragraph: 

computational efficiency and availability of output.  Our strategy was to choose the model subset 

on the basis of the models’ ability to reproduce the seasonal cycle of the recent (historical) climate 

of Alaska and the surrounding area. 

In evaluating the models’ historical performance for the Alaskan region, the core statistic of the 

validation was a root-mean-square error (RMSE) of the differences between time-averaged model 

output for each grid point and calendar month, and the observationally-constrained ERA-40 
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reanalysis.  ERA-40 directly assimilates observed air temperature and sea level pressure 

observations into a product spanning 1958 through 2002. Precipitation is computed by the model 

used in the data assimilation. Data from 1958-2000 were used here for the comparative evaluation 

of the global climate models (GCMs.  For each of the 21 CMIP5 models, we calculated the 

monthly root-mean-square-error (RMSE) for each of three variables: surface air temperature, 

precipitation and sea level pressure.  We tested the sensitivity of the model ranking to the choice of 

the error metric by repeating the calculations using bias-corrected RMSE, mean absolute error 

(MAE), and bias-corrected MAE.  The bias correction removed the domain-average error from the 

error at each grid cell.  The model selection procedure used here has been made available through 

a web based application at  https://uasnap.shinyapps.io/ar5eval/.  This app incorporates various 

degrees of freedom (choice of variable, domain, evaluation metric) described below. Users can 

select any of the four error metrics through the model evaluation web application. 

The Alaskan domain for the model evaluation covers the area 52-72°N, 130-180°W.  For 

comparison, the same error statistics were also evaluated for the following six other domains 

(Figure 3): Canada  (49-72°N, 52-141°W, combined Alaska-Canada (49-72°N, 52-172°W), the 48 

contiguous United States (25-49°N, 66-125°W), the Pacific Islands (17°S-25°N, 152-228°W), and 

two circumpolar domains: 60-90°N and 20-90°N. For each domain, the output from each model 

was interpolated to the 2.5° x 2.5° latitude x longitude grid of the ERA reanalysis. 

The skill of the models was evaluated over all the domains of Figure 3, and the skill over the 

different domains is compared in the results below.  However, we focus on the Alaska domain in 

our illustration of the methods used for skill evaluation and  model selection, as well as in the 

examples of the products presented in Section 4. This focus on Alaska stems from the availability 

of complementary downscaled information for Canada produced by the Pacific Climate Impacts 

Consortium (PCIC).  The PCIC methods and products are accessible at  

https://www.pacificclimate.org/data/statistically-downscaled-climate-scenarios 

While the model evaluation procedure has some commonalty with that used by Walsh et al. (2008) 

to select a subset of models from the previous generation (CMIP3) of global climate models, there 

are several notable extensions of the procedure in the present application.  First, the ranking of 

models was based on the models’ simulations of three variables: surface air temperature, 
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precipitation, sea level pressure rather than only the first two.  Sea level pressure is a proxy for the 

atmospheric circulation at the surface.  Second, rather than summing ranks over all calendar 

months and variables as in Walsh et al. (2008), the ranking was performed only after a summation 

of the standardized RMSEs over all calendar months and variables.  Third, the robustness of the 

RMSEs was tested by a bootstrapping procedure in which repeated (~1000) estimates of a 

particular RMSE were calculated based on randomly selected grid cells (with replacement) from 

the domain under consideration.  The number of points randomly selected was equal to the total 

number of grid cells in the domain.  Figure 4 and 5 provides examples of RMSE values for 

 

Figure 3.   The seven domains for which the model evaluation was performed.  Note that there are 

two circumpolar domains in the lower left panel: 60°-90°N and 20°-90°N. 

January temperature and July precipitation from the 21 models over the Alaska domain.  While the 

distributions for the different models overlap, there is clear separation of the models with lower 

RMSE versus larger RMSE, especially in the case of January temperature.  In general, the 

distributions for the models have the least overlap for sea level pressure and the greatest overlap 

for precipitation.  In all cases, the mean of the distributions is nearly identical to the RMSE 
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Figure 4.  Upper panel: Mean value and ranges of ranks of RMSE of January temperature based on 

1000 random resamplings (with replacement) of Alaska-domain grid cells. Highest-

ranking (smallest RMSE) model is on left, lowest-ranking (largest RMSE) model is on 

right. Lower panel: Probability (based on 1000-member resampling) that a model ranks 

in the top five, based on the RMSE of January temperature. Source: 

https://uasnap.shinyapps.io/ar5eval/ 

 

 

             Figure 5.  As in Figure 4, but for July precipitation over the Alaska domain. 

obtained from the original (not resampled) grid.  However, plots such as Figures 4 and 5 provide a 

measure of the robustness of the rankings of the models. The lower panels of these figures show 

the probability, based on the 1000-member sample of RMSEs for each model, that a particular 

model will rank in the top five based on the RMSE metric for that particular variable. The 
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probabilities are essentially 100% for the top three models in the case of January temperature and 

the top two models in the case of July precipitation. Beyond the 8th-ranking model for temperature 

and the 10th-ranking model for precipitation, the probabilities that resampling would place a model 

in the top five are essentially zero. 

RMSE values for the three variables (temperature, precipitation and sea level pressure) were 

standardized and summed, and this cumulative sum was the basis for ranking the models from #1 

(smallest RMSE) to #21 (largest RMSE).  There was reasonably good consistency from one 

calendar month to the next in the relative rankings of the models.  Figure 6 shows the relative 

errors (RMSEs) of all models in all calendar months for the Alaska domain. The individual cells in 

the error matrix are shaded, with the lightest cells indicating the smallest errors. The numbers in 

the cells are the model ranks for the calendar month.  The models are listed from top to bottom 

according to their ranks aggregated over the twelve calendar months.  These aggregate ranks 

formed the basis for our model selection.   

The evaluation procedure was performed for the eight domains listed above.  For each domain, 

aggregate ranks based on both RMSE and MAE (Mean Absolute Error) were evaluated.  As shown 

in Table 2, the domains with common areas (e.g., Alaska, Alaska+Canada, 60-90°N) generally had 

several models in common among the best performing models (e.g., with smallest RMSEs and 

MAEs).  There is much less overlap between the lists of best-performing models for the smaller 

and larger domains, reinforcing the previous caveat that the best-performing models vary by 

region. The choice of the error metric (RMSE vs. MAE) has only a minor effect on the rankings. 

Finally, although not shown here, there was also a tendency for the same models to have smaller 

RMSEs of all three variables in a particular domain, although there were exceptions, especially for 

precipitation.   
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Figure 6.  Error matrix showing the relative magnitudes of the cumulative normalized error 

(temperature, precipitation, sea level pressure) over the Alaska domain by calendar month (x-axis) 

and model (y-axis).  Darker shading denotes larger RMSE values.  Numbers in boxes are the 

individual models’ ranks (1 = smallest error, 21 = largest error) for the calendar month. Source: 

https://uasnap.shinyapps.io/ar5eval/ 



17 

 

Table 2.  Top-ranking (1st through 6th) models for various domains defined in text.  Rankings are 

shown for two metrics: RMSE (Rood Mean Square Error) and MAE (Mean Absolute Error).           

                 RMSE metric     MAE metric                                  RMSE metric       MAE metric 

Alaska:  MRI-CGCM3      MRI-CGCM3   Alaska-Canada:  GISS-E2-R            GISS-E2-R 

               GISS-E2-R          GISS-E2-R                                     MPI-ESM-LR       MPI-ESM-LR 

               GFDL-CM3         GFDL-CM3                                   CNRM-CM5         CNRM-CM5 

               CNRM-CM5        CanESM2                                      NCAR-CCSM4    CanESM2 

               IPSL-CM5A-LR  HadCM3                                        GFDL-CM3          CCSM4 

               CCSM4                NCAR-CCSM4                             IPSL-CM5A-LR   MRI-CGCM3 

 

Canada: MPI-ESM-LR      GISS-E2-R      Lower 48 states:  MPI-ESM-LR        MPI-ESM-LR 

                GISS-E2-R          MPI-ESM-LR                                MIROC5               MIROC5 

                CNRM-CM5       CNRM-CM5                                  CNRM-CM5       IPSL-CM5A-MR 

                NCAR-CCSM4   CanESM2                                      CanESM2             CNRM-CM5 

                CanESM2            CCSM4                                          IPSL-CM5A-MR  CanESM2 

                IPSL-CM5A-LR  IPSL-CM5A-LR                           HadGM2-ES         HadGM2-ES 

 

60-90°N: MIROC4h            MIROC4h          20-90°N:             MPI-ESM-LR      MPI-ESM-LR 

                MPI-ESM-LR      MPI-ESM-LR                                GFDL-CM3         CanESM2 

                GFDL-CM3         GFDL-CM3                                    CanESM2            MIROC4h 

                CanESM2             CanESM2                                      MIROC4h            GFDL-CM3 

                NorESM1-M        NorESM-1                                      CNRM-CM5       HadGEM2-ES 

                GISS-E2-R           GISS-E2-R                                     HadGEM2-ES     CNRM-CM5 

 

As indicated by Figures 4 and 5, several models had substantially smaller systematic errors than 

others. The models also vary substantially in their projections of future changes over the Alaska 

region (Figure 7).  This combination of historical and future spread raises the possibility that the 
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Figure 7.  Projected temperature changes over Alaska and surrounding region in the 2050s (top 

row) and 2080s (bottom row) under the RCP 4.5 scenario.  Changes for each time slice 

are shown for the 25th-percentile model (left), the 50th-percentile model (center) and 

75th-percentile model (right) based on a ranking of the models by the average warming 

over the domain.  Figure provided by Greg Flato and Robin Rong, Environment Canada. 
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choice of a subset of models might offer a viable approach to narrowing the uncertainty and 

obtaining more robust estimates of future climate change in regions such as Alaska.  Subject to the 

caveats noted earlier, we further evaluated this strategy by examining the errors generated by 

compositing subsets of N models selected from the full set of 21.  The model selection was done in 

two ways: (1) all combinations of N models and (2) the best N models based on the RMSE metric.  

Figure 8 shows that the average error for a single variable (temperature, precipitation, sea level 

pressure) generally increases (orange lines) as one moves down the list of models that rank 

successively lower by the aggregate metric.  When the composite is based on the N randomly 

selected models, the error (averaged over all possible combinations of N models) decreases 

monotonically from N=1 to N=21 (black lines, with range indicated by shading).  The error of the 

N-model composite composed of the single set of N best performing models reaches a minimum 

somewhere between N=1 and N=21 (blue lines) for the individual variables (Figs. 8a-8c).  While 

the decrease of the error with increasing N is not monotonic, there are indications of a minimum in 

the range of N=4 to N=6.  However, the minimum is ill-defined for the integrated three-variable 

metric (Fig. 8d). The values of N at which the minimum is reached vary with region as well as 

with the variable. Nevertheless, even in the case of multimodality, where a single choice of 

optimal composite size may not be clear, there is still a prominent decrease in RMSE during the 

initial compositing of several models. On the basis of these results and in the interest of 

computational economy, we chose N=5 for the Alaskan downscaling application.  

3.2  Downscaling by the delta method 

The downscaling procedure is an application of the so-called “delta” method, in which a model’s 

future change (“delta”) in a variable at a particular location and calendar month is added to the 

historical mean value of the same variable for the same location and calendar month.  The delta is 

computed as the model’s change from the period of the historical climatology (1961-1990 in the 

case of the PRISM data)  to a future time slice (e.g., the 2050s). This delta is added to the higher-

resolution observationally-based climatology, thereby effectively bias-correcting the model’s 

output.  A key assumption in this procedure is that the model’s bias is the same in the future 
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Figure 8.  Normalized RMSE for the Alaska domain as a function of the number of models in the 

composite for (a) temperature, tas (°C); (b) precipitation, pr (mm); and (c) sea level pressure, psl 

(Pa), and (d) the integrated (three-variable) values.   For each plot (variable), orange lines show the 

RMSE individual 21 GCMs ranked from 1 (smallest RMSE) to 21 (largest RMSE).   The narrowing 

gray band shows the range of RMSE among all possible composites of a given size along the x-

axis, and the smooth black line running through it shows the mean RMSE among all these random 

composite models.  The blue lines show the RMSE of the N-model composite made up of the best-

performing individuals.  

 

time slice as in the historical reference period.  In all likelihood, the bias will undergo some change 

over time, thereby limiting the validity of the delta method.  Nevertheless, the delta method has 

been widely used in downscaling applications, and its validity has been found to be comparable to 

that of more sophisticated downscaling methods when applied to monthly fields, although this is 

not the case for daily fields and their corresponding extremes  (Hayhoe, 2010).       

4. Downscaled products 

4.1 Examples of community charts 

Many users requiring climate information for planning or adaptation purposes are located in 

villages or larger population centers.  Given our target of the North American Arctic, we therefore 
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performed the downscaling for the largest available collection of community locations, covering 

all of Alaska, The Yukon Territory, British Columbia, Alberta, Saskatchewan, and Manitoba. This 

resulted in downscaled temperature and precipitation data for more than 4000 communities. In 

order to illustrate the fusion of the model selection and the downscaling, we focus here on Alaska 

and apply the downscaling methodology to the five models that ranked highest by the RMSE 

metric in the historical simulations across the Alaska domain (cf. Table 2): MRI-CGCM3, GISS-

E2-R, GFDL-CM3, IPSL-CM5A-LR and NCAR-CCSM4.  For every year and calendar month, the 

downscaling consisted of calculating the “delta” value for each GCM grid cell, interpolating to the 

same spatial resolution as the high resolution baseline climatology, followed by adding these high 

resolution “deltas” to the same high resolution climatology.   The resulting values for the high-

resolution grid cell containing a particular community became the downscaled values for that 

community.  Downscaled monthly values were then averaged across decadal time slices (2010-

2019, 2020-2029, …, 2090-2099). The downscaled values were computed separately using the 

historical baselines from PRISM and CRU TS 3.2 for 1961-1990, and separately for the RCP 4.5, 

RCP 6.0 and RCP 8.5 forcing scenarios in order to provide an indication of the sensitivities of the 

downscaled products. The downscaled values for any particular community are the values for the 2 

km grid cell containing that community. While there is no consideration of the measurement site’s 

location within the 2 km grid cell (e.g., valley vs. mountain), the use of fine (2 km) grid cells 

reduces the impact of within-call variability for most communities.  However, the same cannot be 

said for the model grid cells, typically 100-200 km in size, for which the average elevation or land-

sea fraction may be a poor representation of the community’s location.  For this reason, the bias 

correction inherent in the downscaling is an important attribute of the downscaling procedure.  

Figure 9 is an example of the downscaled temperatures for Kotzebue, a community on the 

northwest coast of Alaska.  In this example, the downscaling is based on the PRISM climatology 

and the RCP 6.0 (mid-range) emission scenario. The results are shown for each calendar month (x-

axis). The gray bar represents the historical (1961-1990) climatology based on observational data, 

while the colored bars are means for individual decades of the 21st century based on the addition of  
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Figure 9.  Decadal means of downscaled temperatures (°C) for Kotzebue, Alaska as a function of 

calendar month (x-axis).  Colored bars are means for individual decades.  Thin vertical 

lines denote range of the temperatures obtained from the five models. Results are for 

RCP 6.0 (mid-range) emission scenario. 

The models’ deltas for those decades. Consistent with the forcing, warming is apparent in all 

calendar months.   However, the warming is greater in the cold season (November-March) than in 

the warm season.  Moreover, the inter-model spread is generally larger than the overall change in 

the 5-model composite mean, pointing to the considerable uncertainty associated with the 

combination of internal variability and across-model differences in formulation, resolution, 

components that are coupled, and other model characteristics. The across-model spread decreases 

as the averaging is performed over time slices longer than a single decade, e.g., over 30-year 

period, pointing to the influence of internal variability on decadal averages.   

As a second example, Figure 10 shows the downscaled precipitation for McGrath, a small 

community in interior Alaska. In this case, the precipitation is for the RCP 8.5 (high-emission) 

scenario and is based on the CRU 3.2 historical climatology.  (We display the results based on 
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CRU 3.2 and not PRISM in order to avoid redundant graphics while illustrating the choices 

available to users; there is no evidence that either of the precipitation climatologies is better for a 

particular region). The monthly clusters of bars show that precipitation is projected to increase in 

all calendar months, with the largest increases in the warm season.  The across-model spread is 

even larger than in Figure 9, indicative of a general tendency for greater spread in precipitation 

projections than in temperature projections. In this case, the across-model uncertainties are far 

larger than the changes in the composite (five-model mean) values. The spread generally increases 

with time, indicating greater uncertainty in the late-century projections than in the mid-century 

projections.  The 5-model mean projections in Figure 10 even show occasional decreases from one 

time slice to the next (e.g., the blue bars for June and July), pointing to a role of internal variability 

in the decadal means. Because internal variability is a source of uncertainty in addition to the 

uncertainty associated with across-model differences in formulation, the future changes have the 

character of a “bumpy ride” rather than a steady progression, especially in the case of precipitation. 

The values downscaled for each model were based on a single simulation (ensemble member).  

The across-model spread would decrease if the estimates were based on averages of multiple 

ensemble members from each model rather than a single ensemble member, since internal 

variations would be reduced by averaging over multiple simulations. 
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Figure 10.  As in Figure 8, but for calendar-month precipitation (mm) at McGrath, Alaska under 

the RCP 8.5 scenario and referenced to the CRU 3.2 historical climatology. 
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4.2 User interface 

A key aim of the SNAP downscaling was the facilitation of use by stakeholders.  For this reason, a 

user interface was developed not only to provide public access to the products, but to encourage 

users to visualize and experiment with the downscaled projections for their particular locations of 

interest.  User-driven exploration of the sensitivities of the output was one of the priorities in the 

design and implementation of the user interface.   This interface allows users to select different 

options for various calculation and display parameters: the variable (temperature or precipitation), 

the units (°F or °C, inches or millimeters), the reference database for the historical period (PRISM, 

CRU 3.2), the forcing scenario (RCP 4.5, RCP 6.0, RCP 8.5), and the inclusion (or not) of the 

across-model ranges in the display of the projections.  Figure 11 is a screen capture of the user 

interface, which also provides the option to download a user-created chart for a particular 

community. 

As an example of the sensitivities that a user can explore, Figure 12 shows a comparison of the 

projected changes of temperature (°F) at Point Hope, Alaska under the RCP 4.5 and RCP 8.5 

scenarios.  The warming shows clear signs of leveling off in the RCP 4.5 scenario, but continues to 

increase in the RCP 8.5 scenario. The difference in warming between the two scenarios is 

approximately 10°F in the winter months (December-February).  Perhaps more importantly, the 

monthly mean temperatures in the transition months (May, October) rise above freezing by 2100 

under RCP 8.5 while remaining at or below freezing under RCP 4.5.  Implications for freeze-up, 

which affects over-land travel as well as offshore activities (e.g., whaling, subsistence hunting) are 

significant in coastal areas where daily activities are closely tied to the state of the land and ocean 

surfaces. As in the preceding examples, Figure 12 shows the results based on only one climatology 

(PRISM) in order to avoid redundant graphics; there is no evidence that either of the temperature 

climatologies is better for a particular region). 

As a second example of exploration of sensitivities, Figure 13 shows the downscaled precipitation 

values for Juneau, a relatively wet location in southeast Alaska, based on the PRISM (left) and 

CRU (right) reference climatologies.  In both cases, the forcing is the RCP 8.5 scenario.  While the 

projected changes are the same in the two cases, the actual amounts are larger with PRISM, which 
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has a wetter reference climatology for Juneau.  During the late summer and autumn months, which 

are Juneau’s wettest, the differences in the two climatologies are as large as 5 cm (2 inches).  Such  

 

 

 

 

Figure 11.  Screen capture of the home page of the SNAP website for visualization of the 

community charts.  The home page for the visualization tool is accessible at 

https://www.snap.uaf.edu/sites/all/modules/snap_community_charts/charts.php 
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Figure 12.  Decadal means of downscaled temperatures (°F) for Point Hope, Alaska as a function 

of calendar month (x-axis) under the RCP 4.5 scenario (upper) and RCP 8.5 scenario 

(lower). 
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Figure 13.  Decadal means of monthly precipitation (inches) for Juneau, Alaska as a function of 

calendar month (x-axis) based on the historical climatologies of PRISM upper) and 

CRU 3.2 (lower). 
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differences are comparable to the projected changes from the late 1900s to the 2090s, pointing to 

the importance of a robust base climatology in the use of downscaled climate projections.  

The SNAP visualization tool for the community charts has been accessed by users within and 

outside of Alaska.  It has provided reference material for the Alaska section of the Third U.S. 

National Climate Assessment (Stewart et al., 2013), and it has provided input to climate adaptation 

planning efforts for Alaskan communities (Nome Eskimo Community, 2017).  Feedback from 

users has led to additions to the original capabilities, including the capability to download user-

generated charts. 

5.  Software and data availability 

 

All downscaled climate data and software tools discussed in this paper were produced by the 

Scenarios Network for Alaska and Arctic Planning (SNAP) and are available under a Creative 

Commons 4.0 International License (https://creativecommons.org/licenses/by/4.0/), where only 

attribution to SNAP is needed with no additional restrictions allowed.  

 

The AR5 GCM Evaluation Tool (https://uasnap.shinyapps.io/ar5eval/) was developed in January 

of 2016 using the R programming language (https://cran.r-project.org/) Shiny web application 

framework (https://shiny.rstudio.com/). The developer is Matthew Leonawicz, 

mfleonawicz@alaska.edu  The only hardware requirement is a computer with an internet 

connection.  There are no special software requirements, and there is no charge for public users.  

The raw data utilized by this app were obtained from the Coupled Model Intercomparison Project, 

version 5 (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) and the University of East 

Anglia’s Climate Research Unit (CRU, http://www.cru.uea.ac.uk/data). 

 

The SNAP Community Charts, including the downscaling software and the visualization tool, 

(https://www.snap.uaf.edu/sites/all/modules/snap_community_charts/charts.php) were developed 

in 2009 and updated in 2015 to display the latest CMIP5 climate data.  The Community Chartsl 

utilize jQuery, jQueryUI, HighCharts, MySQL, and PHP programming languages. SNAP 

downscaled monthly climate data are available in geotiff format for download from 

https://www.snap.uaf.edu/tools/data-downloads. 
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6. Conclusion 

The project described here represents an end-to-end activity connecting the global climate 

modeling enterprise with planners, decision-makers and other users in Alaska.  The effort has 

included retrieval of the requisite observational datasets and model output, a model evaluation and 

selection procedure targeted at the Alaska region, the actual downscaling by the delta method with 

its inherent bias-adjustment, and the provision of the data to a range of users through a 

visualization tool that empowers users to explore the downscaled output and its sensitivities.  The 

website’s documentation of the visualization tool provides users with a summary of the main 

components of the downscaling, but there have also been frequent requests for a reference that can 

be cited.  The present paper responds to those requests. 

Because the downscaled products have been accessible to users for several years, “lessons learned” 

have begun to accumulate.  One lesson is that users desire the actual plots or digital data for 

presentation purposes or for supporting statements about potential climate change in their area.  

Second, there is need for caution with regard to the internal variability that can affect decadal 

means but that can be obscured by compositing of projections from several models (five, in this 

case). In recognition of this need for caution, the decision was made to include the across-model 

range indicators as a user option.  However, our experience has been that many users do not realize 

that these range indicators include uncertainties due to both internal variability and differences in 

model formulations.  It has been necessary to make this point in a more complete framework of 

uncertainties in future projections (e.g., Hodson et al., 2013). 

Finally, the downscaled products and visualization tool have proven to be useful for messaging 

about the role of human activities, especially alternative futures as they may result from different 

emission scenarios (RCP 4.5 vs. RCP 8.5, the contrasting options of the user interface). We did not 

include the RCP 2.6 scenario because the emission reductions (with negative emissions by 2100) 

are so extreme that this scenario is rapidly becoming impossible to achieve.  Using the other three 

primary RCP scenarios, the community charts take this scenario dependence down to the local 

scale that is of greatest interest and concern to a user.  The messages conveyed by the charts are 

consistent with broader depictions of Arctic change and Overland et al.’s (2014) “adaptation” and 
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“mitigation” timeframes: (1) climate change (especially warming) is already built into the system 

over the next few decades, even under emission reduction scenarios, so adaptation will be 

necessary; and (2) the choice of the emission scenarios substantially alters the trajectory of local 

climate in the second half of the century, so mitigation will ultimately make a difference in a 

community’s future climate.  
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FIGURE CAPTIONS 

 

Figure 1  Topography and coastal configuration of Alaska. Source: Scenarios Network for Alaska 

and Arctic Planning (SNAP), 

http://data.snap.uaf.edu/data/IEM/Inputs/ancillary/elevation/iem_prism_dem_1km.tif, 

modified by J. Littell.  

 

Figure 2. 1950-1999 mean annual mean temperature (upper) and total precipitation (lower) for 

Alaska based on downscaled CRU TS 3.1 (Scenarios for Alaska and Arctic Planning, 

University of Alaska, Fairbanks, after Harris et al. 2014).  Alaska station data  

availability in CRU was most consistent for the 1950-1999 timeframe. 

Figure 3.   The seven domains for which the model evaluation was performed.  Note that there are 

two circumpolar domains in the lower left panel: 60°-90°N and 20°-90°N. 

Figure 4.  Upper panel: Mean value and ranges of ranks of RMSE of January temperature based on 

1000 random resamplings (with replacement) of Alaska-domain grid cells. Highest-

ranking (smallest RMSE) model is on left, lowest-ranking (largest RMSE) model is on 

right. Lower panel: Probability (based on 1000-member resampling) that a model ranks 

in the top five, based on the RMSE of January temperature. Source: 

https://uasnap.shinyapps.io/ar5eval/ 

Figure 5.  As in Figure 4, but for July precipitation over the Alaska domain. 

Figure 6.  Error matrix showing the relative magnitudes of the cumulative normalized error 

(temperature, precipitation, sea level pressure) over the Alaska domain by calendar 

month (x-axis) and model (y-axis).  Darker shading denotes larger RMSE values.  

Numbers in boxes are the individual models’ ranks (1 = smallest error, 21 = largest 

error) for the calendar month. Source: https://uasnap.shinyapps.io/ar5eval/ 

Figure 7.  Projected temperature changes over Alaska and surrounding region in the 2050s (top 

row) and 2080s (bottom row) under the RCP 4.5 scenario.  Changes for each time slice 

are shown for the 25th-percentile model (left), the 50th-percentile model (center) and 
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75th-percentile model (right) based on a ranking of the models by the average warming 

over the domain.  Figure provided by Greg Flato and Robin Rong, Environment Canada. 

Figure 8.   Normalized RMSE for the Alaska domain as a function of the number of models in the 

composite for (a) temperature, tas (°C); (b) precipitation, pr (mm); and (c) sea level 

pressure, psl (Pa), and (d) the integrated (three-variable) values.   For each plot (variable), 

orange lines show the RMSE individual 21 GCMs ranked from 1 (smallest RMSE) to 21 

(largest RMSE).   The narrowing gray band shows the range of RMSE among all 

possible composites of a given size along the x-axis, and the smooth black line running 

through it shows the mean RMSE among all these random composite models.  The blue 

lines show the RMSE of the N-model composite made up of the best-performing 

individuals.  

 

Figure 9.  Decadal means of downscaled temperatures (°C) for Kotzebue, Alaska as a function of 

calendar month (x-axis).  Colored bars are means for individual decades.  Thin vertical 

lines denote range of the temperatures obtained from the five models. Results are for 

RCP 6.0 (mid-range) emission scenario. 

Figure 10.  As in Figure 8, but for calendar-month precipitation (mm) at McGrath, Alaska under 

the RCP 8.5 scenario and referenced to the CRU 3.2 historical climatology. 

Figure 11.  Screen capture of the home page of the SNAP website for visualization of the 

community charts.  The home page for the visualization tool is accessible at 

https://www.snap.uaf.edu/sites/all/modules/snap_community_charts/charts.php 

Figure 12.  Decadal means of downscaled temperatures (°F) for Point Hope, Alaska as a function 

of calendar month (x-axis) under the RCP 4.5 scenario (upper) and RCP 8.5 scenario 

(lower). 

Figure 13.  Decadal means of monthly precipitation (inches) for Juneau, Alaska as a function of 

calendar month (x-axis) based on the historical climatologies of PRISM upper) and 

CRU 3.2 (lower). 

 




